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A Hybrid Approach for 
Predicting PM2.5 Exposure
doi:10.1289/ehp.1002706
van Donkelaar et al. (2010) integrated the 
satellite-based aerosol optical depth (AOD) 
and the chemical transport models (CTM) 
to develop concentrations of particulate 
matter < 2.5 µm in aerodynamic diameter 
(PM2.5). Because spatiotemporal coverage 
of in situ air pollution monitoring is limited, 
the integration of AODs with CTM is the 
wave of the future for developing time–space 
(and potentially source) resolved estimates of 
air quality. However, these methodologies 
have inherent limitations that the authors 
failed to address. van Donkelaar et al. (2010) 
based their research on work of Liu et  al. 
(2004, 2007), but later research from the 
same authors (Paciorek and Liu 2009) 
acknowledged the limitations of Liu et al.’s 
earlier research. van Donkelaar et al. (2010) 
cited this research but did not address these 
limitations.

van Donkelaar et al. (2010) conceptu-
alized that PM2.5 = η × AODs, where η is 
influenced by relative humidity (≥ 35 and 
≥  50% for North America and Europe, 
respectively) and computed using AODc, the 
AOD from three-dimensional chemical trans-
port models (3‑D CTM). This has several 
problems: Failing to account for other fac-
tors, including boundary layer height, atmo-
spheric pressure, and surface characteristics, 
can bias PM2.5 prediction. van Donkelaar 
et al. computed η at 2° × 2.5° and then inter-
polated η at 0.1° × 0.1°, which must have 
resulted in the same value of η for all 10 km 
AODs within each 2° × 2.5°area (at the equa-
tor), and hence strong spatial autocorrelation 
in the predicted PM2.5. Because the average 
lifetime of aerosols is one week and aero-
sols move across geographic space and time, 
AODs (i.e., the extinction of beam power 
due to the presence of aerosols) records a 
very strong spatiotemporal structure. Failing 
to account for spatiotemporal structure in 
AODs is likely to produce biased estimates of 
PM2.5 (Kumar 2010).

The CTM is a data-driven methodology, 
and the robustness of its output is largely dic-
tated by input emission and meteorological 
data. Because such data are rarely complete 
and 100% accurate, it is difficult to accu-
rately predict PM2.5 and AODc using CTM. 
Researchers are moving toward data assimila-
tion techniques, in which predicted values 
are calibrated with respect to in situ measure
ments. van Donkelaar et al. failed to take 
advantage of data assimilation techniques to 
calibrate AODc.

Because of problems with version 5.0 or 
earlier of AODs (Levy et al. 2007), NASA 
is developing a Deep Blue version to esti-
mate AODs over bright surfaces (Hsu 
2010). Given the methodological constraints 
described above, I question van Donkelaar 
et al.’s (2010) conclusions. In their figures, 
the predicted PM2.5 in sub-Saharan Africa 
was unexpectedly high. It is unclear how 
coarse dust in that part of the world could 
result in high PM2.5 concentrations. This 
must be a result of the overestimated AODs 
due to surface brightness 

The integration of AODs and CTM, cou-
pled with spatiotemporal dynamic modeling, 
holds great potential to develop time–space 
resolved estimates of PM. Future research 
should be geared toward assimilation of the 
strengths of these methodologies. CTM has 
a great temporal resolution and is not con-
strained by cloud cover or biased by surface 
brightness, but the reliability of CTM output 
is dictated by the quality of input data. AODs 
have great spatial resolution (10 km) and can 
be estimated at finer spatial resolutions (5 km 
and 2 km), which is likely to be more robust 
than the coarse resolution AOD (Kumar et al. 

2007); however, under cloud-free conditions it 
captures only two snapshots (at ~ 1030 hours 
and ~ 1330 hours local overpass time of the 
Terra and Aqua satellites) per day. Calibrating 
AODs for the problems mentioned above, 
daily (morning and afternoon) AODs can be 
produced globally. The best approach to inte-
grating the strengths of these two method-
ologies would be to a) develop an empirical 
relationship between the calibrated AODs and 
AODc (estimated using a nested grid at a fine 
spatial resolution); b) utilize this relationship to 
predict a calibrated AODc (ÂODc) for all data 
points with available AODc; c) utilize ÂODc 
to predict PM2.5c concentrations; d) develop 
an empirical relationship between predicted 
PM2.5c and in situ measurements of PM2.5 
with the adequate control for spatiotemporal 
structures and other subsidiary variables; and 
e) utilize this empirical relationship to develop 
the calibrated ~PM2.5c (PM2.5c predicted using 
the the empirical model) for all data points 
for which PM2.5c is available. ~PM2.5c in turn, 
can be aggregated and/or interpolated to 
any spatiotemporal scales using time–space 
Kriging, an interpolation method that mini-
mizes error in the predicted values across  
geographic space and time. 
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